Performance Evaluation for a Hydrodynamics
Application in XcalableACC PGAS Language

Akihiro Tabuchi', Masahiro Nakao'?, Hitoshi Murai'?,
Taisuke Boku''3, and Mitsuhisa Sato''?

T1 Graduate School of Systems and Information Engineering, University of Tsukuba
T2 RIKEN Advanced Institute for Computational Science
T3 Center for Computational Sciences, University of Tsukuba

Outline

* Background

* Objective

e XcalableMP and XcalableACC
* CloverLeaf in XACC
 Evaluation

* Conclusion and future work

Background (1/3)

* Clusters equipped with accelerators are increasing

e Tianhe—2 (KNC), Piz Daint (P100), Gyoukou (PEZY-SC2), etc.
» we refer to these clusters as “accelerated clusters”

* Programming for accelerated clusters is difficult
* MPI for communication and CUDA / OpenCL for offloading
 distributing data and work manually
e communicating data using MPI function
* managing accelerator memory using CUDA/OpenCL functions
» describing parallel codes for accelerator

Background (2/3)

* There are some directive—based extensions to make the
programming simpler

e XcalableMP (XMP) for distributed—memory systems
* PGAS language that extends C and Fortran
* two programming models

* Global-view model X LT MP
directive—based easy description

* Local-view model
detailed communication using coarray

* OpenACC for accelerators 0 A
» standard specification defined p e n
by NVIDIA, et al. Directives for Accelerators

https://www.openacc.org/
2018/1/31 HPCAsia2018 PGAS-EI18 4

http://www.xcalablemp.org/

Background (3/3)

Host S oot

* New PGAS language XcalableACC (XACCQC) OpenACC OpenACC
e an integration of XMP and OpenACC v v
* supporting communication between accelerators X XACC=

» global-view and local-view models

e XACC has good performance and high productivity for
some benchmark programs [1,2]

* For himeno benchmark, XACC version achieves over 97%
performance of MPI+OpenACC version on GPU cluster

* To assess XACC, we need evaluations in practical
applications

[1] M. Nakao, et al. “Xcalable ACC: Extension of XcalableMP PGAS Language using OpenACC for Accelerator
Clusters”, Workshop on accelerator programming using directives (WACCPD), pp.27-36, New Orleans, LA, USA,
Nov. 2014

[2] A. Tabuchi, et al. “Implementation and Evaluation of One—sided PGAS Communication in XcalableACC for
Accelerated Clusters”, The 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
Spain, May 2017.

Objective

* To evaluate performance and productivity for XACC
application program
» Target application : a hydrodynamics mini—application CloverlLeaf
* We implement CloverLeaf using XACC global-view model

* We evaluate the performance and productivity and compare them
with MPI+CUDA and MPI+OpenACC versions

4

Y

/

/
'

http://uk—mac.github.io/CloverLeaf/

2018/1/31 HPCAsia2018 PGAS-EI18

XcalableMP (XMP) X—MP

* PGAS language for distributed—memory system
* defined by XMP Spec. W.G. of PC Cluster Consortium in Japan
* base languages are C and Fortran

* providing two programming models Example of global-view model
integer a(N)
e Global-view model I$xmp nodes p(k)
 directive—based programming model I$xmp template t(N)

influenced by High Performance Fortrar| |$xmp distribute t(block) onto p

* providing directives for data distribution '$xmp align a(i) with t(i)
work mapping, communication, 1$xmp shadow a(1:1) dist.

and synchronization =

»We can describe action of all nodes
by adding directives to serial codes

I$xmp loop (i) on t(i) work .
* Local—-view model doi=1 N Mapping
* using coarray for communication a(i) = func(i)
* not used in this work end do
comm.

2018/1/31 HPCAsia2018 PGAS-EI1

I$xmp reflect (a)

XcalableACC (XACC)

* PGAS language for accelerated clusters
* an integration of XMP and OpenACC

e communication between accelerators Example of global-view model
* Global-view model integer a(N)
 acc clause for communication 1$xmp nodes p(*)
directives I$xmp template t(N)

I$xmp distribute t(block) onto p
I$xmp align a(i) with t(i)
I$xmp shadow a(1:1)

* Local-view model
* coarray declaration and

communication on accelerator data
I$acc data create(a)
) . offload
I$xmp loop (i) on t(i)
I$acc parallel loop
. work
doi=1N offload
a(i) = func(i);
end do
comm.
on acc.

I$xmp reflect (a) acc

Example of XACC global-view model

integer a(8) p(1) p(2)
ISxmp nodes p(2) ettt Sl Rty el I e e
ISxmp template t(8) 111213J4 246,718)]

ISxmp distribute t(block) onto p
ISxmp align a(i) with t(i)

* nodes directive defines node set
* template directive defines template

* virtual index array

* used for data and work mapping
e distribute directive distributes

template on nodes
* align directive distributes array as well

as template

2018/1/31 HPCAsia2018 PGAS-EI18

Example of XACC global-view model

ISacc data copy (a)
ISxmp loop (i) on t(i)
ISacc kernels loop

doi=1,8
a(iy=i*2 host
end do memory
* data directive allocate and copy data to
accelerator memory
* for distributed array, only assigned
parts are allocated
acc.
e xmp loop directive distributes loop memory

iterations as well as the template
e acc kernels loop directive offloads

loop to accelerator

2018/1/31 HPCAsia2018 PGAS-EI18 10

Example of XACC global-view model

ISxmp align a(i) with t(i)
ISxmp shadow a(1:1) il it Rl ity ety I it

host
memory

ISxmp reflect (a) acc

* shadow directive adds shadow region where
can be used as halo region

e reflect directive updates shadow region

with the value of actual region
* acc clause specifies update shadow on

acc.

accelerator memory memory

2018/1/31 HPCAsia2018 PGAS-EI18 11

Omni XACC compiler

* A source—to—source XACC compiler
» extension of Omni XMP compiler

e XACC — OpenACC + Omni XACC runtime call

e XMP based directives are translated to runtime calls
* enabling to use general OpenACC compilers (PGI, Cray, Omni, etc.)

* Runtime library is implemented by MPI and CUDA for GPU
clusters
* CUDA is used for pack/unpack kernels

translator OpenACC + compiler
XACC 5| Omni XACC Executable
runtime call

4 4

 supporting XACC global-view model in C/Fortran Orrjni XACC
e also XACC local-view model in C runtime library

2018/1/31 HPCAsia2018 PGAS-EI18 12

CloverlLeaf

* A hydrodynamics mini—application
» developed by UK Atomic Weapons Establishment and University of
Warwick

* published on GitHub (https://github.com/UK-MAC/CloverlLeaf)

» Solves compressible Euler equations on a 2D Cartesian grid
* finite volume method with second—order accuracy

* Physical quantities are arranged on a staggered grid
e often used for flow simulation on structured grid

@ O @
X X Cells

[O ® X Quantities at the centers of cells (e.g. pressure)
X X @ Quantities at the corners of cells (e.g. velocity)

Data distribution (quantities at centers of cells)

X X X X
X X X X

X X X X
X X X X
X X X X distribute

X X X X
X X X X

X X X X

e CloverLeaf distributes data based on cells
* We can distribute quantities just like cells because

the number of centers of cell is equal to the number of cells

Distributed array in XACC global-view model
(quantities at centers of cells)

REAL(KIND=8) pressure(x_min-2:x_max+2, y_min-2:y _max+2)

ISxmp align (i,j) with t(i,j) :: pressure distributing array according to template
ISxmp shadow (2:2,2:2) :: pressure

adding shadow region for halo region

distribute

2018/1/31 HPCAsia2018

Data distribution (quantities at corners of cells)
duplicated

C @ @ @
distribute ¢
([@ (> @ o

@ @ C @ o
@ O () @ o

@ @ ([) o

By cell based distribution, corners of cells are duplicated on divided face,
but highlighted elements do not exist in original serial version.

— We refer the duplicated parts as “extra region”
’ To allocate the extra region, we utilize shadow directive.

Distributed array in XACC global-view model
(quantities at corners of cells)

REAL(KIND=8) xvelO(x_min-2:x_max+3, y_min-2:y_max+3)
ISxmp align (i,j) with t(i,j) :: xvelO :
ISxmp shadow (2:3,2:3) :: xvelO To add the extra region,

incrementing upper width of shadow region by one
N/2

A

N-+1
\

p(1,1)

—

distribute

Red regions are the extra region
We treat them as normal region
in computation and don’ t need

to update them in halo exchange

Computation

* double nested loops construct main computation

1Sxmp loop (j,k) on t(j,k) expand(0:1,0:1 distributing nested loops according

ISacc kernels loop independent to template same as quantity arrays

do k=y_min,y_max+1
ISacc loop independent
do j=x_min,x_max+1

xvell(j,k) = xvelO(j,k) - ...

enddo

enddo

" offloading nested loops and specifying
iterations are data—independent

important feature is template eees 11 R Ll leees
expand clause ~ __ TTTTmmmmmmeoTmemoetmecptmommmmocs

array for quantities | '
expand clause expands at corners of cells : :
\ .
: : extra region
local iteration range /)’ >< g

Normal local iteration range is [

same to local template range

To process extra region,}
— extra region is not processed

2018/1/31 we add expand clause

width clause specifies update widths

Communication from inside
width (Jower-width : upper-width, ...)

* Main communication is halo exchange
* Quantities at centers of cells | 1$xmp reflect width(2:2, 2:2) acc

communication

on accelerator

* Quantities at corners of cells | !$xmp reflect width(2:3, 2:3) acc
v upper widths
are three
T A A

« We don’ t need to update innermost shadow element, which is extra region

* However, we update shadow region including extra region because there is

no clause to exclude it
2018/1/31 HPCAsia2018 PGAS-EI18 19

Evaluation

* Three implementations

« MPI+CUDA ¢ We got MPI+CUDA and MPI+OpenACC versions
e MPI+OpenACC from GitHub and use them with modifications.
* XACC

* Performance evaluation
e problem sizes are 960 X 960 and 3840 X 3840 cells
* the number of time steps is 1000
* execution time with strong and weak scaling

* Productivity evaluation
e Source lines of codes (SLOC)
e Delta SLOC (DSLOC, difference from serial version)

Evaluation environment

* HA-PACS/TCA at Center for Computational Sciences,

University of Tsukuba

* 4 processes/node
1 GPU/process

Node configuration and software

CPU Intel Xeon—ES 2680v2 2.8GHz X 2

Memory DDR3 1866MHz, 128GB

GPU Tesla K20X X 4

Interconnect | InfiniBand Mellanox CGonnect—X3 FDR

Software PGI 16.10, CUDA 8.0, MVAPICH2 2.2
Omni Compiler 1.2.1 + extension

e up to 64 processes on 16 nodes

2018/1/31

HPCAsia2018 PGAS-EI18

CPU Qeldly CPU

Execution time (38402 cells, strong scaling)

) 180 1 -
< 160 0.9 A <
o 140 . 083
il S 120 The performance of XACC version EEINESEN
%) *;’ 100 is over 89% of MPI+CUDA and 82 o 'g
g S 380 over 97% of MPI+OpenACC 04 = [
4 3 60 035 BB
- é 40 I I 0.2 o %D

5 | a

- 0 I I I (N . s == 81 %

COOUICVOUILCOOILOOILOOILOO OO =

NOONDO0OONLDO0OONOLOO0OOOO0OLOAOO0OOOOO o

3123123312332 33232%3:2 B

T FgTrenTe YR R 7 e ;

A O o0 oo oo ao ao oo g

>+ =+ =+ =+ =+ =+ =+ =

The computational time required by the XACC version was from &

4 to 12% longer than that by MPI+OpenACC

Number of processes (X x Y)
B Computation ™ECommunication ~*~MPI+0OpenACC XACC

2018/1/31 HPCAsia2018 PGAS-EI18 22

Computation performance degradation of XACC
version

* The reason is code translation by XACC compiler
e XACC code : Array is declared as explicit—shape array

REAL(KIND=8) :: pressure(x_min-2:x_max+2, y_min-2:y_max+2)
ISxmp align (i,j) with t(i,j) :: pressure

* Translated code : Array is declared as assumed—shape or deferred—
shape array and XACC runtime determines the size dynamically

REAL(KIND=8) :: XMP__pressure(0:, 0:)

e array sizes are undefined at the compile time and the
compiler cannot optimize the offset calculations, which
Increases the register utilization by GPU kernels

* it decreases the number of concurrent execution threads

Halo exchange time (38402 cells, strong scaling)

" When the number of nodes is Y the time becomes the same level of
small, XACC version requires MPI+CUDA as the number of nodes
slightly longer time because increases and the amount of

w

N
UL OITN Ul w Ol &

|
(b)
-+
+
()
o)
R
| -
()
=
o

O

Halo exchange time [s]

of redundant communication & communication reduces
() [()
> > > > > >

2x1 2X2 2x4 4x4 Ax8 8x8

Number of processes (X x Y)
B Send, recv ®Pack, unpack, copy ®QOthers

2018/1/31 HPCAsia2018 PGAS-EI18 24

Execution time (38402 cells, weak scaling)

200
180

C C C < C C O
160
140
120
100
60
40
20
0
< = = = O

a

-

O

|

o

|
(b)
-+
+
()
o)
R
| -
()
=
o

| -
(]
)
-+
()
o)
B2
|-
()
i
.0
<

PNWROITOYN00 W

Execution time [s]
(0]
(@)
Relative performance for MPI+CUDA

CO0O0000000

The performance of XACC version is 89% of
MPI+CUDA and 96-97% of MPI+OpenACC

XAC

The computational time required by the XACC

version was 4% longer than that by MPI+OpenACC

Number of processes (X x Y)
B Computation ™ECommunication ~*~MPI+0OpenACC XACC

2018/1/31 HPCAsia2018 PGAS-EI18 25

Halo exchange time (38402 cells, weak scaling)

8
] “
s I
0 -+
S)
y
y 3
© G
5 1 I I
20
— T 99 LTYYLYYLY QLTI LQQ
0000000003000 C Q0
XACC version requires longer time at almost all configuration
because the amount of redundant communication is constantly large
> = = T > T > T > T
o o o o o o
= = = = = =
2x1 2X2 2x4 4x4 4x8 3x8

Number of processes (X x Y)
B Send, recv ®Pack, unpack, copy ®QOthers

2018/1/31 HPCAsia2018 PGAS-EI18

Proposal: extension for reflect directive

* We can specify only widths for partial shadow update
 1$xmp reflect (array) width(2:3)

T A A
extra region is updated

* We propose of fset clause to skip inner shadow element
« 1$xmp reflect (array) width(2:2) offset(0:1)

excluding the extra region

[F] '$xmp reflect ... [offset (reflect—offset [, reflect—offset]..)]
[C] #pragma xmp reflect ... [offset (reflect—offset [, reflect—offset]...)]

2018/1/31 reflect—offset is int—expr [int—expr/ .

Comparison of SLOC

SLOC

6000 5397
D 5000
=
o 4000
o 8 3043 x1.2
sl S 3000
O)
= 2000

(@)

difference between
MPI+OpenACC and
XACC is not large

0 \e O O
%é\ 000 0‘?\0 *\yg)
X)
X &
Q\

and DSLOC

DSLOC from Serial ver.

1200
1000
800
@)
o Delete
(7|) 600 | |
) 400 Add (Directive)
200 ¥ Add (Fortran)
o = & " Modify
O @)
O O
0(\?” .\R‘
OQ
Q\i‘
&

« MPI+CUDA version requires 1.7 times
more SLOC than serial version

« XACC version requires only 1.2 times
more SLOC than serial version

2018/1/31 HPCAsiaj

* major change in MPI+OpenACC version is non—
directive code, while that of XACC version is
directive addition.

— XACC version retains a better image of the
serial version than MPI+OpenACC version

Related work

* CloverLeaf is implemented for GPU using OpenACC,
OpenCL, and CUDA [3]

* OpenACC achieves comparable performance and high productivity
comparing with OpenCL and CUDA

e XACC also uses OpenACC for accelerator programming

* CloverLeaf is implemented using PGAS model
OpenSHMEM and coarray [4]
* OpenSHMEM and coarray are kind of local-view model
* we use global-view model of XACC
* the implementations target normal clusters
* our work targets accelerated clusters

[3] J.A.Herdman, et al. 2012. Accelerating Hydrocodes with OpenACC, OpenCL and CUDA. In 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis. 465-471.

[4] A.C.Mallinson, et al. 2014. Experiences at Scale with PGAS Versions of a Hydrodynamics Application. In
Proceedings of the 8th International Conference on Partitioned Global Address Space Programming Models

(PGAS’ 14). ACM, NY, USA, Article 9, 11 pages.

Conclusion

* To evaluate performance and productivity for XACC
application program, we implemented a hydrodynamics
mini—application CloverLeaf in XACC

* We showed how staggered grid arrangement is implemented

e XACC has sufficient performance
* the performance of XACC was over 89% of MPI+CUDA

e XACC has good productivity

« XACC global-view model allows us to describe applications by
adding directives to the serial version of codes

* Future work
* implementing proposed of fset clause

» considering to improve XACC code translation

