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Background (1/3)

* Clusters equipped with accelerators are increasing

e Tianhe—2 (KNC), Piz Daint (P100), Gyoukou (PEZY-SC2), etc.
» we refer to these clusters as “accelerated clusters”

* Programming for accelerated clusters is difficult
* MPI for communication and CUDA / OpenCL for offloading
 distributing data and work manually
e communicating data using MPI function
* managing accelerator memory using CUDA/OpenCL functions
» describing parallel codes for accelerator



Background (2/3)

* There are some directive—based extensions to make the
programming simpler

e XcalableMP (XMP) for distributed—memory systems
* PGAS language that extends C and Fortran
* two programming models

* Global-view model X LT MP
directive—based easy description

* Local-view model
detailed communication using coarray

* OpenACC for accelerators 0 A
» standard specification defined p e n
by NVIDIA, et al. Directives for Accelerators

https://www.openacc.org/
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http://www.xcalablemp.org/



Background (3/3)

Host S oot

* New PGAS language XcalableACC (XACCQC) OpenACC OpenACC
e an integration of XMP and OpenACC v v
* supporting communication between accelerators X XACC=

» global-view and local-view models

e XACC has good performance and high productivity for
some benchmark programs [1,2]

* For himeno benchmark, XACC version achieves over 97%
performance of MPI+OpenACC version on GPU cluster

* To assess XACC, we need evaluations in practical
applications

[1] M. Nakao, et al. “Xcalable ACC: Extension of XcalableMP PGAS Language using OpenACC for Accelerator
Clusters”, Workshop on accelerator programming using directives (WACCPD), pp.27-36, New Orleans, LA, USA,
Nov. 2014

[2] A. Tabuchi, et al. “Implementation and Evaluation of One—sided PGAS Communication in XcalableACC for
Accelerated Clusters”, The 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
Spain, May 2017.



Objective

* To evaluate performance and productivity for XACC
application program
» Target application : a hydrodynamics mini—application CloverlLeaf
* We implement CloverLeaf using XACC global-view model

* We evaluate the performance and productivity and compare them
with MPI+CUDA and MPI+OpenACC versions
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http://uk—mac.github.io/CloverLeaf/
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XcalableMP (XMP) X—MP

* PGAS language for distributed—memory system
* defined by XMP Spec. W.G. of PC Cluster Consortium in Japan
* base languages are C and Fortran

* providing two programming models Example of global-view model
integer a(N)
e Global-view model I$xmp nodes p(k)
 directive—based programming model I$xmp template t(N)

influenced by High Performance Fortrar| |$xmp distribute t(block) onto p

* providing directives for data distribution '$xmp align a(i) with t(i)
work mapping, communication, 1$xmp shadow a(1:1) dist.

and synchronization =

»We can describe action of all nodes
by adding directives to serial codes

I$xmp loop (i) on t(i) work .
* Local—-view model doi=1 N Mapping
* using coarray for communication a(i) = func(i)
* not used in this work end do
comm.

2018/1/31 HPCAsia2018 PGAS-EI1

I$xmp reflect (a)




XcalableACC (XACC)

* PGAS language for accelerated clusters
* an integration of XMP and OpenACC

e communication between accelerators Example of global-view model
* Global-view model integer a(N)
 acc clause for communication 1$xmp nodes p(*)
directives I$xmp template t(N)

I$xmp distribute t(block) onto p
I$xmp align a(i) with t(i)
I$xmp shadow a(1:1)

* Local-view model
* coarray declaration and

communication on accelerator data
I$acc data create(a)
) . offload
I$xmp loop (i) on t(i)
I$acc parallel loop
. work
doi=1N offload
a(i) = func(i);
end do
comm.
on acc.

I$xmp reflect (a) acc




Example of XACC global-view model

integer a(8) p(1) p(2)
ISxmp nodes p(2) ettt Sl Rty el I e e
ISxmp template t(8) 111213J4 246,718)]

ISxmp distribute t(block) onto p
ISxmp align a(i) with t(i)

* nodes directive defines node set
* template directive defines template

* virtual index array

* used for data and work mapping
e distribute directive distributes

template on nodes
* align directive distributes array as well

as template
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Example of XACC global-view model

ISacc data copy (a)
ISxmp loop (i) on t(i)
ISacc kernels loop

doi=1,8
a(iy=i*2 host
end do memory
* data directive allocate and copy data to
accelerator memory
* for distributed array, only assigned
parts are allocated
acc.
e xmp loop directive distributes loop memory

iterations as well as the template
e acc kernels loop directive offloads

loop to accelerator

2018/1/31 HPCAsia2018 PGAS-EI18 10



Example of XACC global-view model

ISxmp align a(i) with t(i)
ISxmp shadow a(1:1) il it Rl ity ety I it

host
memory

ISxmp reflect (a) acc

* shadow directive adds shadow region where
can be used as halo region

e reflect directive updates shadow region

with the value of actual region
* acc clause specifies update shadow on

acc.

accelerator memory memory

2018/1/31 HPCAsia2018 PGAS-EI18 11



Omni XACC compiler

* A source—to—source XACC compiler
» extension of Omni XMP compiler

e XACC — OpenACC + Omni XACC runtime call

e XMP based directives are translated to runtime calls
* enabling to use general OpenACC compilers (PGI, Cray, Omni, etc.)

* Runtime library is implemented by MPI and CUDA for GPU
clusters
* CUDA is used for pack/unpack kernels

translator OpenACC + compiler
XACC 5| Omni XACC Executable
runtime call

4 4

 supporting XACC global-view model in C/Fortran Orrjni XACC
e also XACC local-view model in C runtime library
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CloverlLeaf

* A hydrodynamics mini—application
» developed by UK Atomic Weapons Establishment and University of
Warwick

* published on GitHub (https://github.com/UK-MAC/CloverlLeaf)

» Solves compressible Euler equations on a 2D Cartesian grid
* finite volume method with second—order accuracy

* Physical quantities are arranged on a staggered grid
e often used for flow simulation on structured grid

@ O @
X X Cells

[ O ® X Quantities at the centers of cells (e.g. pressure)
X X @ Quantities at the corners of cells (e.g. velocity)




Data distribution (quantities at centers of cells)

X X X X
X X X X

X X X X
X X X X
X X X X distribute

X X X X
X X X X

X X X X

e CloverLeaf distributes data based on cells
* We can distribute quantities just like cells because

the number of centers of cell is equal to the number of cells



Distributed array in XACC global-view model
(quantities at centers of cells)

REAL(KIND=8) pressure(x_min-2:x_max+2, y_min-2:y _max+2)

ISxmp align (i,j) with t(i,j) :: pressure distributing array according to template
ISxmp shadow (2:2,2:2) :: pressure

adding shadow region for halo region

distribute

2018/1/31 HPCAsia2018



Data distribution (quantities at corners of cells)
duplicated

C @ @ @
distribute ¢
([ @ (> @ o

@ @ C @ o
@ O () @ o

@ @ ([ ) o

By cell based distribution, corners of cells are duplicated on divided face,
but highlighted elements do not exist in original serial version.

— We refer the duplicated parts as “extra region”
’ To allocate the extra region, we utilize shadow directive.



Distributed array in XACC global-view model
(quantities at corners of cells)

REAL(KIND=8) xvelO(x_min-2:x_max+3, y_min-2:y_max+3)
ISxmp align (i,j) with t(i,j) :: xvelO :
ISxmp shadow (2:3,2:3) :: xvelO To add the extra region,

incrementing upper width of shadow region by one
N/2

A

N-+1
\

p(1,1)

—

distribute

Red regions are the extra region
We treat them as normal region
in computation and don’ t need

to update them in halo exchange



Computation

* double nested loops construct main computation

1Sxmp loop (j,k) on t(j,k) expand(0:1,0:1 distributing nested loops according

ISacc kernels loop independent to template same as quantity arrays

do k=y_min,y_max+1
ISacc loop independent
do j=x_min,x_max+1

xvell(j,k) = xvelO(j,k) - ...

enddo

enddo

" offloading nested loops and specifying
iterations are data—independent

important feature is template  eees 11 R Ll leees
expand clause ~ __ TTTTmmmmmmeoTmemoetmecptmommmmocs

array for quantities | '
expand clause expands  at corners of cells : :
\ .
: : extra region
local iteration range /)’ >< g

Normal local iteration range is [

same to local template range

To process extra region,}
— extra region is not processed

2018/1/31 we add expand clause




width clause specifies update widths

Communication from inside
width (Jower-width : upper-width, ...)

* Main communication is halo exchange
* Quantities at centers of cells | 1$xmp reflect width(2:2, 2:2) acc

communication

on accelerator

* Quantities at corners of cells | !$xmp reflect width(2:3, 2:3) acc
v upper widths
are three
T A A

« We don’ t need to update innermost shadow element, which is extra region

* However, we update shadow region including extra region because there is

no clause to exclude it
2018/1/31 HPCAsia2018 PGAS-EI18 19




Evaluation

* Three implementations

« MPI+CUDA ¢ We got MPI+CUDA and MPI+OpenACC versions
e MPI+OpenACC from GitHub and use them with modifications.
* XACC

* Performance evaluation
e problem sizes are 960 X 960 and 3840 X 3840 cells
* the number of time steps is 1000
* execution time with strong and weak scaling

* Productivity evaluation
e Source lines of codes (SLOC)
e Delta SLOC (DSLOC, difference from serial version)



Evaluation environment

* HA-PACS/TCA at Center for Computational Sciences,

University of Tsukuba

* 4 processes/node
1 GPU/process

Node configuration and software

CPU Intel Xeon—ES 2680v2 2.8GHz X 2

Memory DDR3 1866MHz, 128GB

GPU Tesla K20X X 4

Interconnect | InfiniBand Mellanox CGonnect—X3 FDR

Software PGI 16.10, CUDA 8.0, MVAPICH2 2.2
Omni Compiler 1.2.1 + extension

e up to 64 processes on 16 nodes

2018/1/31
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Execution time (38402 cells, strong scaling)
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The computational time required by the XACC version was from &

4 to 12% longer than that by MPI+OpenACC

Number of processes (X x Y)
B Computation ™ECommunication ~*~MPI+0OpenACC XACC
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Computation performance degradation of XACC
version

* The reason is code translation by XACC compiler
e XACC code : Array is declared as explicit—shape array

REAL(KIND=8) :: pressure(x_min-2:x_max+2, y_min-2:y_max+2)
ISxmp align (i,j) with t(i,j) :: pressure

* Translated code : Array is declared as assumed—shape or deferred—
shape array and XACC runtime determines the size dynamically

REAL(KIND=8) :: XMP__pressure(0:, 0:)

e array sizes are undefined at the compile time and the
compiler cannot optimize the offset calculations, which
Increases the register utilization by GPU kernels

* it decreases the number of concurrent execution threads



Halo exchange time (38402 cells, strong scaling)

" When the number of nodes is Y the time becomes the same level of
small, XACC version requires MPI+CUDA as the number of nodes
slightly longer time because increases and the amount of
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Execution time (38402 cells, weak scaling)
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The performance of XACC version is 89% of
MPI+CUDA and 96-97% of MPI+OpenACC

XAC

The computational time required by the XACC

version was 4% longer than that by MPI+OpenACC
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Halo exchange time (38402 cells, weak scaling)
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XACC version requires longer time at almost all configuration
because the amount of redundant communication is constantly large
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Proposal: extension for reflect directive

* We can specify only widths for partial shadow update
 1$xmp reflect (array) width(2:3)

T A A
extra region is updated

* We propose of fset clause to skip inner shadow element
« 1$xmp reflect (array) width(2:2) offset(0:1)

excluding the extra region

[F] '$xmp reflect ... [ offset ( reflect—offset [, reflect—offset].. )]
[C] #pragma xmp reflect ... [ offset ( reflect—offset [, reflect—offset]... )]

2018/1/31 reflect—offset is int—expr [int—expr/ .




Comparison of SLOC

SLOC
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« MPI+CUDA version requires 1.7 times
more SLOC than serial version

« XACC version requires only 1.2 times
more SLOC than serial version

2018/1/31 HPCAsiaj

* major change in MPI+OpenACC version is non—
directive code, while that of XACC version is
directive addition.

— XACC version retains a better image of the
serial version than MPI+OpenACC version




Related work

* CloverLeaf is implemented for GPU using OpenACC,
OpenCL, and CUDA [3]

* OpenACC achieves comparable performance and high productivity
comparing with OpenCL and CUDA

e XACC also uses OpenACC for accelerator programming

* CloverLeaf is implemented using PGAS model
OpenSHMEM and coarray [4]
* OpenSHMEM and coarray are kind of local-view model
* we use global-view model of XACC
* the implementations target normal clusters
* our work targets accelerated clusters

[3] J.A.Herdman, et al. 2012. Accelerating Hydrocodes with OpenACC, OpenCL and CUDA. In 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis. 465-471.

[4] A.C.Mallinson, et al. 2014. Experiences at Scale with PGAS Versions of a Hydrodynamics Application. In
Proceedings of the 8th International Conference on Partitioned Global Address Space Programming Models

(PGAS’ 14). ACM, NY, USA, Article 9, 11 pages.




Conclusion

* To evaluate performance and productivity for XACC
application program, we implemented a hydrodynamics
mini—application CloverLeaf in XACC

* We showed how staggered grid arrangement is implemented

e XACC has sufficient performance
* the performance of XACC was over 89% of MPI+CUDA

e XACC has good productivity

« XACC global-view model allows us to describe applications by
adding directives to the serial version of codes

* Future work
* implementing proposed of fset clause

» considering to improve XACC code translation



