
Towards a Parallel Algebraic MulƟgrid Solver Using PGAS
Niclas Jansson and Erwin Laure
KTH Royal InsƟtute of Technology

PGAS-EI18, HPC Asia 2018PGAS-EI18, HPC Asia 2018



The main goal of the EC Horizon 2020 funded ExaFLOW project is to
address key algorithmic challenges in CFD to enable simulaƟon at
exascale,

▶ Accurate error control, adapƟve mesh refinement
▶ Solver efficiency, scalable numerical methods and precondiƟoners
▶ Strategies to ensure fault tolerance and resilience
▶ Input/output for extreme data, data reducƟon
▶ Energy awareness in solver design

hƩp://www.exaflow-project.eu

Acknowledgment

2PGAS-EI18, HPC Asia 2018



Why use PGAS languages?
▶ One-sided communicaƟon
▶ Allow for fine grained parallelism
▶ More producƟve languages

A typical two-sided distributed memory program
Data decomposiƟon
while not done do

Compute local part
Send/Receive overlap
Add contribuƟon from overlap

end while

One sided comm. allows for novel parallelizaƟon algorithms

IntroducƟon

3PGAS-EI18, HPC Asia 2018



PGAS based Linear Algebra library

▶ Row wise distribuƟon of matrices and column vectors
▶ Matrix/vector entries accessible by all

▶ Easier to write solvers/precondiƟoners
▶ Less synchronizaƟon points

▶ Implemented in Unified Parallel C
▶ Hybrid interface for use with MPI codes
▶ Low latency communicaƟon kernels

▶ Reduce overhead cf. message passing
▶ Improving fine grained parallelism

▶ Sparse matrix assembly (FEM)
▶ Allowing for less elements/core

0.01

0.1

1

102 103 104 105

ru
nƟ

m
e
(s
ec
on

ds
)

PEs

Sparse matrix assembly

PETSc
UPC

IntroducƟon

4PGAS-EI18, HPC Asia 2018



A mulƟlevel method for solving Ax = b, where A is an n× nmatrix with
entries aij and x, b are vectors of size n.

▶ Eliminated smooth errors by solving Ae = r, on a coarser problem
▶ Interpolate back, and correct the fine soluƟon, x = x+ e

if k = coarsest level then
Solve Akxk = fk

else
Relax µ1 Ɵmes on Akxk = fk

Set xk+1 = 0, fk+1 = Ik+1
k (fk − Akxk)

Apply V--cycle on level k+ 1
Correct the soluƟon by
xk = xk + Ikk+1xk+1

Relax µ2 Ɵmes on Akxk = fk

end if

Ω0

��6
66

Ω0

Ω1

��6
66

Ω1

DD���

Ω2

��6
66

Ω2

DD���

Ω3

DD���

▶ AsymptoƟcally opƟmal complexity
▶ Notorious difficult to parallelize in an opƟmal way!

Algebraic MulƟgrid

5PGAS-EI18, HPC Asia 2018



Let Ωk be the set of components of x at level k
▶ Split Ωk into two disjoint sets C and F
▶ No underlying geometry
▶ Need to pick coefficients in Ak+1 related to a error freq.
▶ Classify if unknowns are strongly coupled to each other

−aij ≥ θmax
k̸=i

{−aik}

▶ Measure λi, number of points strongly influenced by i
Ruge-Stüben Coarsening
Related to interpolaƟon quality

C1: For each point j that strongly influences a F-point i, j is either a C-point
or it strongly depends on a C-point l that also strongly influences i.

Size of the coarser level

C2: C should be a maximal subset of all points with the property that no two
C points are strongly connected to each other.

AMG coarsening

6PGAS-EI18, HPC Asia 2018



Ruge-Stüben Coarsening
Let U = Ωk

/* First phase */
while U ̸= ∅ do

Pick an i ∈ U with maximal λi

Set U = U− {i}, C = C+ {i}
Add all points j which strongly depends on i to F
Increase the measure λl for all points l that are strongly dependent on j
Decrease the measure λm for all pointsm that are strongly dependent on i

end while

/* Second phase */
for all i ∈ F do

if i violates criteria C1 then
F = F− {i}, C = C+ {i}

end if
end for

AMG coarsening

7PGAS-EI18, HPC Asia 2018



A challenge for message passing is the restricted local view of the data
▶ A thread must be able to determine if a neighboring point is C or F
▶ Points will change between F and C during coarsening
▶ Explicit communicaƟon with neighbors
▶ Less opƟmal coarsening algorithms

▶ Easier parallelizaƟon
▶ Pay with more mulƟgrid cycles
▶ Set/Graph based (CLJP, PMIS HMIS)
▶ HeurisƟcs (RS3)

RestricƟons comes from a two-sided message passing perspecƟve
▶ Put C/F data in global memory
▶ Accessible by all threads
▶ Solves most of the parallelizaƟon issues

AMG Coarsening

8PGAS-EI18, HPC Asia 2018



PGAS based RS
Most of the data structures are local

▶ Unordered set of C and F points
▶ Measure λi stored in red-black trees

Keep a list of C variables in global memory
▶ PE dependent block size
▶ Directory approach (arbitrary size)
▶ Protect the list with a set of variables

▶ Declared as UPC strict
▶ Less expensive than using locks

•

��

•

��

•

��

•
��

Directory of C points lists

List of C points for PE3

List of C points for PE2

List of C points for PE1

List of C points for PE0

AMG Coarsening

9PGAS-EI18, HPC Asia 2018



PGAS based RS
Let U = Ωk and Cg(:) = 0
/* First phase */
while U ̸= ∅ do

Pick an i ∈ U with maximal λi
Set U = U− {i}, C = C + {i} and Cg(i) = 1
Add all points j which strongly depends on i to F
Increase the measure λl for all points l that are strongly dependent on j
Decrease the measure λm for all pointsm that are strongly dependent on i

end while
Barrier
/* Second phase */
for all i ∈ F do

if i violates criteria C1 then
Wait while S(i) ̸= 0
S(i) = 1 /* Protect variable i */
F = F − {i}, C = C + {i} and Cg(i) = 1
S(i) = 0 /* Release variable i */

end if
end for

AMG Coarsening

10PGAS-EI18, HPC Asia 2018



Load Balancing

▶ Ak+1 becomes smaller and smaller for each coarsening level k
▶ Move operator towards a single core (easier coarse level solve)
▶ Use a load balanced linear distribuƟon N = PL+ R,

L =
⌊
N
P

⌋
,

R = N mod P,

n =

⌊
N+ P− p− 1

P

⌋



Ak+1

Ak

A0



PE0

PE1

PE2

PE3

AMG Coarsening

11PGAS-EI18, HPC Asia 2018



▶ MulƟgrid Cycling
▶ Matrix vector products
▶ RedistribuƟon rouƟnes (load balancing)

▶ Coarse Level Solver
▶ Direct solver (single PE)
▶ Krylov solver (mulƟple PEs)

▶ Smoother
▶ Hybrid CF Gauss Seidel

xki =

(
bi −

∑
j<i

aijxkj −
∑
j>i

aijxk−1
j

)/
aii

▶ Straighƞorward implementaƟon (PGAS)
▶ Work across PE boundaries

AMG Solver

12PGAS-EI18, HPC Asia 2018



Benchmark Problem
Poisson's equaƟon on the unit square

−∆u(x, y) =f(x, y), (x, y) ∈ Ω,

u(x, y) =0, (x, y) ∈ Γ0,

∂nu(x, y) =g(x, y), (x, y) ∈ Γ1,

∂nu(x, y) =0, (x, y) ∈ ∂Ω \ (Γ0 ∪ Γ1),

f(x, y) =500 exp(−((x− 0.5)2 + (y− 0.5)2)/0.02)

g(x, y) =25 sin(5πy).

EvaluaƟon

13PGAS-EI18, HPC Asia 2018



Benchmark Problem
▶ DiscreƟze PDE by FEM
▶ Use the FEM framework FEniCS

▶ FEniCS assembles the sƟffness matrix
▶ Linear system solved by external libraries

▶ Hybrid MPI + PGAS
▶ Use PETSc as a reference krylov solver
▶ All experiments performed on the Cray XC40 Beskow at PDC/KTH

EvaluaƟon

14PGAS-EI18, HPC Asia 2018



Parallel Coarsening

▶ No arƟfacts from boundary between parƟƟons

Serial coarsening Parallel coarsening Mesh parƟƟons

Coarsening Quality

15PGAS-EI18, HPC Asia 2018



AsymptoƟcally opƟmal complexity

▶ Number of V-cycles independent of problem size
▶ Number of V-cycles independent of PEs

Benchmark solved for two matrix sizes and diff. numbers of PEs

0
5

10
15
20
25
30
35
40

16 32 64 128 256 512 1024

Ite
ra
Ɵo

ns

PEs

A
B

Coarsening Quality

16PGAS-EI18, HPC Asia 2018



100

101
102

103
104

105
106

102 103 104 105 106 107 108

Ite
ra
Ɵo

ns

Problem size

10−3
10−2

10−1
100
101
102
103
104
105

102 103 104 105 106 107 108

To
ta
ls
ol
uƟ

on
Ɵm

e
Problem size

AMG
Krylov

AMG
Krylov

Performance

17PGAS-EI18, HPC Asia 2018



AMG Krylov

PEs n Cop Cg l Iters tsetup tsolve ttot Iters ttot

1 759 1.821 1.480 2 10 0.008 0.008 0.015 58 0.003
4 2868 2.137 1.552 4 13 0.030 0.037 0.067 119 0.007

32 174144 2.265 1.529 7 21 0.712 1.265 1.977 1023 0.436
128 693888 2.098 1.495 8 23 3.779 7.635 11.414 2196 6.432
512 2770176 2.065 1.486 9 28 8.190 23.601 31.791 6624 42.117

1024 11069952 2.044 1.480 10 29 11.476 51.787 63.263 15139 114.841

▶ AMG overhead costs too high for small matrices
▶ AMG setup costs (tsetup) less than solve (tsolve)
▶ Operator (Cop) and grid complexity (Cg) doesn't grow
▶ AMG iteraƟons doesn't grow too much with large numbers of PEs

Performance

18PGAS-EI18, HPC Asia 2018



▶ New parallel formulaƟon of Ruge-Stüben
▶ Not possible to formulate using MPI

▶ Retains similar properƟes as the serial algorithm
▶ Easier implementaƟon due to the PGAS abstracƟon

Future work
▶ Reduce AMG overhead
▶ OpƟmized collecƟve operaƟons

▶ No subset collecƟves in std. UPC
▶ HandwriƩen versions not opƟmized

▶ InvesƟgate UPC atomics
▶ Our Cray compiler didn't support it
▶ AlternaƟve instead of strict variables

Summary

19PGAS-EI18, HPC Asia 2018


