
Proposal of Interface for
Runtime Memory Manipulation of Applications
via PGAS-based Communication Library

at PGAS-EI Workshop

31 Jan, 2018

1

Takeshi Nanri (RIIT Kyushu University)

Background
• PGAS Libraries has become practical candidates as

parallel programming tools
• PGAS-based library

• OpenSHMEM
• GASPI
• Global Arrays
• ACP

etc.

• Message-Passing based library
• MPI RMA

• Fundamental communication library
• UCX
• Portals4

etc.

• One of their most important advantages is asynchronousness

2

Proposal of an API for
Runtime Memory Manipulation
• Enable asynchronous access to any exposed memory

region in an application from outside.

• Empowered by PGAS-based communication library.

3

...
Application External proc

get
put

Outline

• Advantages of Libraries with PGAS Interfaces

• ACP (Advanced Communication Primitives):
an Example of PGAS-based Communication Library

• Proposal of OpAS (Open Address Space) Interface

• Sample Implementation of OpAS on ACP

4

PGAS vs Message Passing

• PGAS (One-sided communication)
= Data transfer
• Lower overhead

• Lower memory consumption

• Better overlapping

... assuming RDMA is available

• Message Passing
= Data transfer

+ Synchronization
• Usually, easier and more efficient

to describe data dependency
among processes

5

PGAS Language vs
PGAS Library
• PGAS languages: UPC, CAF, Xcalable MP, etc.

• Provides high abstraction of process parallelism

• Various communication optimizations in compilers are expected
• Sometimes, they are difficult to apply

• PGAS libraries:
• Enable detailed control of data transfer and synchronization

• May show better performance for complicated patterns of
communication

6

ACP
(Advanced Communication Primitives)

• An example of "PGAS-based" communication library

• Basic Layer
• Provides PGAS interfaces.

• memory management
• copy
• atomic
• barrier

• Runs on:
• IB, Ethernet (UDP), Tofu/Tofu2

• Middle Layer
• Optional interfaces built on top of Basic Layer:

• Message Passing
• Data Structures (List, Vector, Map, etc.)

• Memory consumptions, such as buffers, are explicit

7

Use this layer for OpAS

Memory Model of ACP
• Local memory:

• Ordinal address space of each process, managed by OS.

• Global memory:
• Memory space virtually shared among processes.

• Any local memory space of any process can be mapped to the
global memory via registration.

Global memory

Local memory

CPU

8

Fundamental Interfaces of ACP

• Infrastructure
• initialization / finalization / synchronization / ranks

• Global Memory Management
• registration / de-registration / query on Global Memory

• Global Memory Access
• copy / atomic on Global Memory

9

Global Memory Management
• Registration of Local Memory:

• Creates an address-translation key (atkey).

• Global address:
• Queried for the pair of atkey and local address.

• These are "local" operations.

Global memory

Local memory

CPU

10

local address

global address

atkey

Global Memory Access
• Copy operation

• Not Get / Put

• Why?
Because this is
global memory

• Atomic operation

11

Global memory

Local memory

CPU

Global memory

Local memory

CPU atomic(ga)

copy(ga2, ga1)

How to exchange "global addresses"?

Starter Memory

• A special memory region of each process that is
registered at the initialization.
• Global address of starter of any process can be queried directly.

• Mainly used for exchanging global addresses.

12

Global memory

Local memory

CPU

Details of Global Memory Access

• Non-blocking:
• Wait with handle.

• 'Order' argument:
• Handle of a previous operation to wait.

• Used for describing algorithms of patterned communications.

• In-order completion:
• Completion of one operation guarantees completions of

all preceding operations.

13

acp_handle_t acp_copy (acp_ga_t dst, acp_ga_t src, size_t size,
acp_handle_t order)

Evaluation of Memory Consumption

• Estimated memory consumption per process
of ACP with 1M procs:

• may require 10GB for message passing with 10KB buffer / proc

14

InfiniBand Tofu UDP

369MB / process 67MB / process 34MB / process

Fundamental Performance of ACP

15

Remote to Remote

Local to Remote (Put) Remote to Local (Get)

Effect of Overlap with ACP

• Code: 2D stencil with 1D decomposition
• One-sided version uses "ready flag" for consistency

16

unpack

put to right

pack

calculate
inner

calculate
edges

put to left
unpack

READY
from right

READY
from left

... ...

Communication Time of Stencil

• MPI: Message Passing (isnd) and RMA (actv/pasv) of
Open MPI 2.0.0rc3 (om) and MVAPICH2 2.2rc1 (mv)

• ACP: Non-overlap (novlp) and Overlap (ovlp)

17

500x500 2000x2000

ACP + MPI

• ACP can be used to connect multiple MPI codes
=> enables memory-efficient MPI

with smaller communicator

18

Memory Consumption of ACP + MPI
• Sample code:

• Hierarchical master-worker
• Main Master /

Sub Master /
Worker

• Compare
• ACP + MPI
• MPI-Spawn

• with MPI_Comm_spawn()

• MPI-Split
• with MPI_Comm_split()

• Largest memory
consumption:

MPI-Split > MPI-Spawn > ACP

19

Main Master Sub Master

Main Master

Sub Master

worker worker
worker worker worker

worker

Short Summary
of ACP

• Memory registration is
flexible and local
• Any region can be registered at any time without synchronization

• Global addresses can be exchanged via starter memories

• copy and atomic operations within global memory

• orders can be used to express dependencies

• ACP + MPI

20

Introduction of OpAS
(Open Address Space) Interface

• Leverage "asynchronous", "flexible" and "ACP+MPI"
features of ACP.
• Enable asynchronous access to any exposed memory region in an

application from outside.

• Possible usage:
• In-situ visualization, Runtime manipulation, Debug, etc.

21

...

Application External proc

get
putexpose

expose

Similar Approach

• Libsim of VisIt
• Library for In-situ visualization

• Instructs simulations to communicate with the visualizer (VisIt)
• Wait for connections

• Provide information about internal data structure

• Handle commands from VisIt

• Notify VisIt that the time step changed
etc.

22

...

Application VisIt

Libsim

OpAS vs Libsim

• OpAS is more primitive
• Able to (or Need to) write detailed interactions between the

application and the external process.

• Provide opportunity for other style of interactions
• Completely independent access from the external process.

= Less overhead and modification on applications.
• Ex) Expose once, and do nothing afterwards.

23

OpAS Libsim

Structure of OpAS
• OpAS Target

= Application

• OpAS Server
= Connecter between an application and an external process

• OpAS Client
= External process interacts with the application

24

...

OpAS Target OpAS Server

get

OpAS Client

get request

OpAS on ACP

• Invoke OpAS Target and OpAS Server by ACP+MPI

• OpAS Client connects to the server, at anytime.
• Maybe via TCP/UDP

• Discuss about implementations of
Target and Server in this talk.

25

...

OpAS Target OpAS Server

get

OpAS Client

get request

ACP
MPI

Example of flows between
Target and Server

26

OpAS Target OpAS Server

opast_init() opass_init()

opast_expose_area("name",
addr, size)

opass_progress_tgt()

register
"name", rank, addr

opass_sync()opast_sync()

opass_open("name", rank, &addr)

opass_get(addr,offset,size)

opast_lock_area(area, LOCKED) change status to locked

Implementation

• Request Queue on Server

• Exposing Area
• Target Side

• Server Side

• Access to the Area

• Lock / Unlock Area

27

• Used for accepting requests from targets
• Exposing, Locking and Unlocking Areas

• Prepared at opas{s|t}_init()
• Malloc, ACP Register
• Distribute GA via Starter Memory

• Pushed from Target
• ACP Atomic Add to Tail
• ACP Copy request to Tail % Qlen

• Handled at Server
in opass_progress()
• Handle request at Head % Qlen
• Head++

Request Queue on Server

28

head(int64)

tail(int64)

request

request
Q

le
n

request

head % Qlen

tail % Qlen

GlobalAddress

OpAS Server

Exposing Area: Target Side

• ACP Register area

• Push exposure request to the request queue in OpAS Server
• Rank
• Global Address
• Size
• State

• ReadOnly or ReadWrite
• Name

• ACP Copied separately via Starter Memory because length is unlimited.

• Wait for completion
• Check a Flag to be updated by the server
• Also get the index of the Area Information Table in the Server

via Starter Memory

29

opast_area_t opast_expose_area(
char *name, void *addr, size_t size, int stat)

area to expose

Exposing Area: Server Side

• In response to the exposure request from Target

• Store Area Information
• Via hash table of rank and name

• Send Ack to Target
• Modify the Flag

• Also notify index of the area in the table via Starter Memory

30

H
as

h
 T

ab
le

Area Information Table

rank
name
GA
size
state

Access to the Area from Server

• Open Area

• Return Information of the Area of the Rank and Name

• Make access
Ex) Get

• Check state
• Return if not permitted

• Check offset

• ACP Copy from Target
• Pipelined with local buffers

31

opass_area_t opass_open_area(int rank, char *name)

int opass_get(opass_area_t area, size_t offset,
size_t size, void *addr)

Lock / Unlock Area

• Target
• Request Lock / Unlock

with the index of the area information table to the Server

• Wait for Ack from the Server

• Server
• Handle the request in opass_progress() function

• Change the state of the area to Locked / Unlocked

• Send Ack to the Target

32

Evaluation
• Environment

• Hardware: ITO System in Kyushu University, Japan
• Intel Xeon Gold 3.0 GHz cluster
• InfiniBand EDR

• Software:
• Open MPI 3.0.0 for Targets
• ACP 3.0.0 for Targets-Server

• Target: 4 processes (2 procs / node)

• Measurement
• Exposure (at Target)
• Lock (at Target)
• Get (at Server)

33

Performance

34

Processes Latency (us)

1 75

2 80

3 90

4 127

Processes Latency (us)

1 60

2 76

3 110

4 148

Size Latency (us) Bandwidth (MB/sec)

4B 5 0.2

4KB 67 150

4MB 734 1,428

Latency of Exposure Latency of Lock

Latency and Bandwidth of Get

Conclusion

• Proposed OpAS (Open Address Space),
an interface for runtime access to the memory of
applications

• Now we are working for :
- in-situ visualization
- runtime manipulation
- debugging

• Github repository will be prepared, soon
• ACP is available from

https://github.com/project-ace/ACP

35

Acknowledgement

• ACP Library was developed in ACE Project supported by
JST CREST
• Members:

• Kyushu Univ.
T. Nanri, H. Honda, R. Susukita, T. Kobayashi and Y. Morie

• Fujitsu Ltd.
S. Sumimoto, Y. Ajima, K. Saga, T. Nose and N. Shida

• ISIT Kyushu
H. Shibamura and T. Soga

• Kyoto Univ.
K. Fukazawa

• Oita Univ.
T. Takami

36

