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Background
• PGAS Libraries has become practical candidates as

parallel programming tools
• PGAS-based library

• OpenSHMEM
• GASPI
• Global Arrays
• ACP

etc.

• Message-Passing based library
• MPI RMA

• Fundamental communication library
• UCX
• Portals4

etc.

• One of their most important advantages is asynchronousness
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Proposal of an API for 
Runtime Memory Manipulation
• Enable asynchronous access to any exposed memory 

region in an application from outside.

• Empowered by PGAS-based communication library.
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Outline

• Advantages of Libraries with PGAS Interfaces

• ACP (Advanced Communication Primitives):
an Example of PGAS-based Communication Library

• Proposal of OpAS (Open Address Space) Interface

• Sample Implementation of OpAS on ACP 
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PGAS vs Message Passing

• PGAS (One-sided communication)
= Data transfer
• Lower overhead

• Lower memory consumption

• Better overlapping

... assuming RDMA is available

• Message Passing
= Data transfer 

+ Synchronization
• Usually, easier and more efficient 

to describe data dependency
among processes
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PGAS Language vs 
PGAS Library
• PGAS languages: UPC, CAF, Xcalable MP, etc.

• Provides high abstraction of process parallelism

• Various communication optimizations in compilers are expected
• Sometimes, they are difficult to apply

• PGAS libraries:
• Enable detailed control of data transfer and synchronization

• May show better performance for complicated patterns of 
communication

6



ACP
(Advanced Communication Primitives)

• An example of "PGAS-based" communication library

• Basic Layer 
• Provides PGAS interfaces.

• memory management
• copy
• atomic
• barrier

• Runs on:
• IB, Ethernet (UDP), Tofu/Tofu2

• Middle Layer
• Optional interfaces built on top of Basic Layer:

• Message Passing 
• Data Structures (List, Vector, Map, etc.)

• Memory consumptions, such as buffers, are explicit
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Use this layer for OpAS



Memory Model of ACP
• Local memory:

• Ordinal address space of each process, managed by OS.

• Global memory:
• Memory space virtually shared among processes.

• Any local memory space of any process can be mapped to the 
global memory via registration. 

Global memory

Local memory

CPU
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Fundamental Interfaces of ACP

• Infrastructure
• initialization / finalization / synchronization / ranks

• Global Memory Management
• registration / de-registration / query on Global Memory

• Global Memory Access
• copy / atomic on Global Memory
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Global Memory Management
• Registration of Local Memory:

• Creates an address-translation key (atkey).

• Global address:
• Queried for the pair of atkey and local address.

• These are "local" operations.

Global memory

Local memory

CPU
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Global Memory Access
• Copy operation

• Not Get / Put

• Why?
Because this is
global memory

• Atomic operation
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Global memory

Local memory

CPU

Global memory

Local memory

CPU atomic(ga)

copy(ga2, ga1)

How to exchange "global addresses"?



Starter Memory

• A special memory region of each process that is 
registered at the initialization.
• Global address of starter of any process can be queried directly.

• Mainly used for exchanging global addresses.

12

Global memory

Local memory

CPU



Details of Global Memory Access

• Non-blocking:
• Wait with handle.

• 'Order' argument:
• Handle of a previous operation to wait.

• Used for describing algorithms of patterned communications.

• In-order completion:
• Completion of one operation guarantees completions of 

all preceding operations. 
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acp_handle_t acp_copy (acp_ga_t dst, acp_ga_t src, size_t size,
acp_handle_t order)



Evaluation of Memory Consumption

• Estimated memory consumption per process
of ACP with 1M procs:

• may require 10GB for message passing with 10KB buffer / proc

14

InfiniBand Tofu UDP

369MB / process 67MB / process 34MB / process



Fundamental Performance of ACP
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Effect of Overlap with ACP

• Code: 2D stencil with 1D decomposition
• One-sided version uses "ready flag" for consistency
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Communication Time of Stencil

• MPI: Message Passing (isnd) and RMA (actv/pasv) of 
Open MPI 2.0.0rc3 (om) and MVAPICH2 2.2rc1 (mv)

• ACP: Non-overlap (novlp) and Overlap (ovlp)
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ACP + MPI

• ACP can be used to connect multiple MPI codes
=> enables memory-efficient MPI 

with smaller communicator
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Memory Consumption of ACP + MPI
• Sample code:

• Hierarchical master-worker
• Main Master /

Sub Master /
Worker

• Compare
• ACP + MPI
• MPI-Spawn

• with MPI_Comm_spawn()

• MPI-Split  
• with MPI_Comm_split()

• Largest memory 
consumption:

MPI-Split > MPI-Spawn > ACP
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Short Summary
of ACP

• Memory registration is 
flexible and local
• Any region can be registered at any time without synchronization

• Global addresses can be exchanged via starter memories

• copy and atomic operations within global memory

• orders can be used to express dependencies

• ACP + MPI 
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Introduction of OpAS
(Open Address Space) Interface

• Leverage "asynchronous", "flexible" and "ACP+MPI" 
features of ACP.
• Enable asynchronous access to any exposed memory region in an 

application from outside.

• Possible usage:
• In-situ visualization, Runtime manipulation, Debug, etc.
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Similar Approach

• Libsim of VisIt
• Library for In-situ visualization

• Instructs simulations to communicate with the visualizer (VisIt)
• Wait for connections

• Provide information about internal data structure

• Handle commands from VisIt

• Notify VisIt that the time step changed
etc.
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OpAS vs Libsim

• OpAS is more primitive
• Able to (or Need to) write detailed interactions between the 

application and the external process.

• Provide opportunity for other style of interactions
• Completely independent access from the external process.

= Less overhead and modification on applications.
• Ex) Expose once, and do nothing afterwards.
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Structure of OpAS
• OpAS Target

= Application

• OpAS Server
= Connecter between an application and an external process

• OpAS Client
= External process interacts with the application
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OpAS on ACP

• Invoke OpAS Target and OpAS Server by ACP+MPI

• OpAS Client connects to the server, at anytime.
• Maybe via TCP/UDP

• Discuss about implementations of 
Target and Server in this talk.
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Example of flows between 
Target and Server
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OpAS Target OpAS Server

opast_init() opass_init()

opast_expose_area("name", 
addr, size)

opass_progress_tgt()

register 
"name", rank, addr

opass_sync()opast_sync()

opass_open("name", rank, &addr)

opass_get(addr,offset,size)

opast_lock_area(area, LOCKED) change status to locked



Implementation

• Request Queue on Server

• Exposing Area
• Target Side

• Server Side

• Access to the Area

• Lock / Unlock Area
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• Used for accepting requests from targets
• Exposing, Locking and Unlocking Areas

• Prepared at opas{s|t}_init()
• Malloc, ACP Register 
• Distribute GA via Starter Memory

• Pushed from Target
• ACP Atomic Add to Tail
• ACP Copy request to Tail % Qlen

• Handled at Server 
in opass_progress()
• Handle request at Head % Qlen
• Head++

Request Queue on Server
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Exposing Area: Target Side

• ACP Register area

• Push exposure request to the request queue in OpAS Server
• Rank
• Global Address
• Size
• State

• ReadOnly or ReadWrite
• Name

• ACP Copied separately via Starter Memory because length is unlimited.

• Wait for completion
• Check a Flag to be updated by the server
• Also get the index of the Area Information Table in the Server 

via Starter Memory
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opast_area_t opast_expose_area(
char *name, void *addr, size_t size, int stat)

area to expose



Exposing Area: Server Side

• In response to the exposure request from Target

• Store Area Information 
• Via hash table of rank and name

• Send Ack to Target
• Modify the Flag

• Also notify index of the area in the table via Starter Memory
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Access to the Area from Server

• Open Area

• Return Information of the Area of the Rank and Name

• Make access
Ex) Get

• Check state
• Return if not permitted

• Check offset

• ACP Copy from Target
• Pipelined with local buffers
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opass_area_t opass_open_area(int rank, char *name)

int opass_get(opass_area_t area, size_t offset, 
size_t size, void *addr)



Lock / Unlock Area

• Target
• Request Lock / Unlock 

with the index of the area information table to the Server

• Wait for Ack from the Server

• Server
• Handle the request in opass_progress() function

• Change the state of the area to Locked / Unlocked

• Send Ack to the Target
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Evaluation
• Environment

• Hardware: ITO System in Kyushu University, Japan
• Intel Xeon Gold 3.0 GHz cluster
• InfiniBand EDR

• Software: 
• Open MPI 3.0.0 for Targets
• ACP 3.0.0 for Targets-Server

• Target: 4 processes (2 procs / node)

• Measurement
• Exposure (at Target)
• Lock (at Target)
• Get (at Server)
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Performance
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Processes Latency (us)

1 75

2 80

3 90

4 127

Processes Latency (us)

1 60

2 76

3 110

4 148

Size Latency (us) Bandwidth (MB/sec)

4B 5 0.2

4KB 67 150

4MB 734 1,428

Latency of Exposure Latency of Lock

Latency and Bandwidth of Get



Conclusion

• Proposed OpAS (Open Address Space),
an interface for runtime access to the memory of 
applications

• Now we are working for :
- in-situ visualization
- runtime manipulation
- debugging 

• Github repository will be prepared, soon
• ACP is available from

https://github.com/project-ace/ACP
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