HLR|S

Recent Experiences in Using MPI-3 RMA in DART

Workshop on PGAS programming models:
Experiences and Implementations (PGAS-EI'18)

Joseph Schuchart
Roger Kowalewski
Karl Fuehrlinger

January 31, 2018

Introduction to the DASH RunTime

DASH:

» C++11/14 PGAS abstraction following STL
concepts: iterators + operators

» Static and dynamic distributed containers

Container Description Data distribution DASH Application
Array<T> 1D Array static, configurable
‘ DASH C++ Template Library
NArray<T, N> N-dim. Array static, configurable
| DART C API
Shared<T> Shared scalar fixed, configurable
i ; | DART (DASH RunTime)

Variable-size,
Directory"<T> locally indexed manual Communication Backend

Arra

Y ‘ MPI 3.x|GAsmn |GASPI |cunA |
N Similar to .

CoArray’<T> CAF uniform (rifier

(*) Under construction

Introduction to the DASH RunTime

DASH:

» C++11/14 PGAS abstraction following STL
concepts: iterators + operators

» Static and dynamic distributed containers

» Distributed algorithms: find, max_element, ... DASH Application

» Local and global view on data | DASH Cr+ Template Library
» Any trivially copyable type as elements | DaRT c AP

» Flexible data distribution patterns | DART (DASH RunTime)

Communication Backend

‘ MPI 3.:|GASN!I |EASPI |CUDA |

Hardware

Introduction to the DASH RunTime

DASH:

» C++11/14 PGAS abstraction following STL
concepts: iterators + operators

Static and dynamic distributed containers

Local and global view on data
Any trivially copyable type as elements
Flexible data distribution patterns
DART:

» C11 runtime for DASH

» Communication abstraction

» Workhorse implementation: MPI-3 RMA

vV v v v

v

Distributed algorithms: find, max_element, ...

DASH Application

‘ DASH C++ Template Library

DART C API

DART (DASH RunTime)

Communication Backend

‘ MPI 3.:|GASN!I |EASPI |CUDA |

Hardware

Introduction to the DASH RunTime

DASH:

» C++11/14 PGAS abstraction following STL
concepts: iterators + operators

» Static and dynamic distributed containers
» Distributed algorithms: find, max_element, ... DASH Application |
» Local and global view on data | DASH Ce+ Template Library
» Any trivially copyable type as elements | AR C APl |
» Flexible data distribution patterns | oART @ASH RunTime

DA RT Communication Backend
» C11 runtime for DASH L:::mt”"' —

» Communication abstraction
» Workhorse implementation: MPI-3 RMA

» Easy transition from existing parallel codes
> Available on (nearly) all systems

Example: DASH-DART-MPI

dash::Array<int> array(N);
// initialize array

// better: dash::generate ()
if (dash::myid() == 0) {

for (int i = 0; i < N; ++i) {

array.async[il =

}

¥

array.barrier();

if (dash::myid() == 1)
std::cout << arrayl[0];

DASH

dart_team_memalloc_aligned ();

dart_put_blocking_local();

dart_flush_all();
dart_barrier ();

dart_get_blocking ();

DART

MPI_Win_allocate_shared();
MPI_Win_attach();
MPI_Allgather ();

MPI_Rput ();
MPI_Wait O);

MPI_Win_flush_all();
MPI_Barrier();

MPI_Rget ();
MPI_Wait ();

MPI

MPI-3 Aspects and Features

» Process groups and collectives
» Thread-safety

» Asynchronous Progress

» Communication Primitives

>

Global Memory Allocation

Thread-safety

DASH/DART functionality generally thread-safe
~ Usable with common threading abstractions (e.g., OpenMP)

void compute (dash::Array<double>& array)
#pragma omp parallel for schedule (dynamic)
for (int i = 0; i < array.size(); ++i) {
array.asyncl[il = f(i);
}
array.flush();
}

Thread-safety

DASH/DART functionality generally thread-safe
~ Usable with common threading abstractions (e.g., OpenMP)

Some limitations apply:
» Unsynchronized data access in global memory
> Alternative: dash: :Array< dash::Atomic<T> >
» Collective operation on same team

» Reductions/synchronization
» Team management
» Global memory allocation

HLR|S

(Asynchronous) Progress

» MPI one-sided can come in two flavors:
1. Progress happens without involvement of the remote process

PO P1
Put

Flush
2

Flush 3
£
38

Get
Flush |«
Barrier

(Asynchronous) Progress

» MPI one-sided can come in two flavors:
1. Progress happens without involvement of the remote process
2. Progress happens with involvement of the remote process

PO P1
PO P1
Put

o]
Flush 3
Q Flush | %
Flush 2]

£

o

(&

Get Flush
Flush 5
Get IS
, Flush &
Barrier

(Asynchronous) Progress

» MPI one-sided can come in two flavors:
1. Progress happens without involvement of the remote process
2. Progress happens with involvement of the remote process

PO P1
PO P1
Put

Flush %
o Flush |- g
Flush 2 3

£

8

Get Flush

Flush =
0
Get 5
Barrier Flush @

» Does progress happen in the background? We don’t know!

(Asynchronous) Progress

» MPI one-sided can come in two flavors:

1. Progress happens without involvement of the remote process
2. Progress happens with involvement of the remote process

» MPI standard is vague:

[...] implementations must guarantee that a process
makes progress on all enabled communications it
participates in, while blocked on an MPI call.

HLR|S

(Asynchronous) Progress

» MPI one-sided can come in two flavors:

1. Progress happens without involvement of the remote process
2. Progress happens with involvement of the remote process

» MPI standard is vague:
[...] implementations must guarantee that a process
makes progress on all enabled communications it
participates in, while blocked on an MPI call.

while (!flag) {
> Examp|e: MPI_Get (&flag, mype, win);

. -~ MPI_Flush_local(mype, wine);
local polling ~ blocked?)

HLR|S

(Asynchronous) Progress

» MPI one-sided can come in two flavors:

1. Progress happens without involvement of the remote process
2. Progress happens with involvement of the remote process

» MPI standard is vague:
[...] implementations must guarantee that a process
makes progress on all enabled communications it
participates in, while blocked on an MPI call.

while (!flag) {
> Examp|e: MPI_Get (&flag, mype, win);

. -~ MPI_Flush_local(mype, wine);
local polling ~ blocked?)

» MPI interfaces for triggering progress engine and querying progress
semantics?

HLR|S

DART Communication Primitives

» Relies on passive target mode (MPI_Win_lock_all())
» Extended Put/Get interface:

» dart_get: non-blocking, requires dart_flush[_locall
» dart_get_blocking: remote completion
» dart_get_blocking_local: local completion

DART Communication Primitives

» Relies on passive target mode (MPI_Win_lock_all())
» Extended Put/Get interface:

» dart_get: non-blocking, requires dart_flush[_locall
» dart_get_blocking: remote completion
» dart_get_blocking_local: local completion

» Strided/indexed access:

> dart_create_type_strided ~~ MPI_Type_vector
> dart_create_type_indexed ~~ MPI_Type_indexed

DART Communication Primitives

v

Relies on passive target mode (MPI_Win_lock_all())
Extended Put/Get interface:

» dart_get: non-blocking, requires dart_flush[_locall

» dart_get_blocking: remote completion

» dart_get_blocking_local: local completion
Strided/indexed access:

> dart_create_type_strided ~~ MPI_Type_vector

> dart_create_type_indexed ~~ MPI_Type_indexed
DART uses size_t

» Transparently chunk up large transfers (> 2°' bytes)
» Preallocate types using MPI_Type_contiguous

v

v

v

DART Communication Primitives

v

Relies on passive target mode (MPI_Win_lock_all())
Extended Put/Get interface:

» dart_get: non-blocking, requires dart_flush[_locall
» dart_get_blocking: remote completion
» dart_get_blocking_local: local completion

Strided/indexed access:
> dart_create_type_strided ~~ MPI_Type_vector

v

v

> dart_create_type_indexed ~~ MPI_Type_indexed
DART uses size_t

» Transparently chunk up large transfers (> 2°' bytes)
» Preallocate types using MPI_Type_contiguous

No implicit ordering guarantees in non-blocking operations

v

v

Global Memory Allocation
Win_allocate

MPI Win_allocate

© || T

Node 0 Node 1

Global Memory Allocation
Win_allocate

MPI Win_allocate

@ E[D Win_dynamic

Node 0 Node 1

MPI_Allgather

©)

MPI_Win_create_shared

+ (:
MPI_Win_shared_query
+ [
_Get_address T
in

Notes On Global Memory Allocation

» No control over local memory alignment
» Natural alignment seems guaranteed

Notes On Global Memory Allocation

» No control over local memory alignment
» Natural alignment seems guaranteed

» Shared memory system configuration: size of /dev/shm and /tmp

HLR|S

Notes On Global Memory Allocation

» No control over local memory alignment

» Natural alignment seems guaranteed
» Shared memory system configuration: size of /dev/shm and /tmp
» Temporary global allocations used in DASH algorithm

» Most notably: accumulate and [min,max] _element
» Required for custom operators and ValueType
» Cannot always use MPI reduction/collective operations

HLR|S

Notes On Global Memory Allocation

» No control over local memory alignment

» Natural alignment seems guaranteed
» Shared memory system configuration: size of /dev/shm and /tmp
» Temporary global allocations used in DASH algorithm

» Most notably: accumulate and [min,max] _element
» Required for custom operators and ValueType
» Cannot always use MPI reduction/collective operations

» What are the performance characteristics?

HLR|S

Systems under test:
» Cray XC40 Hazel Hen: CCE 8.5.3
» IBM SuperMUC: iDataPlex IBM POE 1.4
» IB Linux Cluster: Open MPI 2.0.2
Extension of the OSU benchmark suite

» Allocation latencies
» Communication latencies

» Code available at
https://github.com/dash-project/dash-bench

https://github.com/dash-project/dash-bench

Allocation Latencies: Open MPI

: : : Processes. ! ! ! Processes.
108 | 28 (1x28) —— 1 108 ¢ 28 (1x28) —+—
280 (10x28) 280 (10x28)
107 b 560 (20x28)] 107 [561 (20x28)]
840 (30x28) — = 840 (30x28) — =
1400 (50x28) —=— 1400 (50x28) —=—
5106 E G108 3
Q Q
3 £ /,9’
= =105 | P
Sl Sl ,,.;‘/]
5 10 4 2 10 u
- - 86855 R "‘y/
o NS
1031] 108 | A o /«/ 4
PR S A S
R S SN SN
10% | E 102 | E
101 Lt 1 1 ! 1 101 L 1 1 ! !
20 25 210 215 220 20 25 210 215 220
Per-process Allocation Size [Bytes] Per-process Allocation Size [Bytes]
(a) win_allocate (b) Win_dynamic

Latency [usec]
= = = = =
o o o o o
2 %2 % UV 3

=
o
W

=
o
o

=
o,
A

T T
Processes
28 (1x28) —— 3
280 (10x28)
560 (20x28) i
840 (30x28)
1400 (50x28) —=—
2800 (100x28) 3
5600 (200x28) —e—

D |

e R]

20

25 210 215 220
Per-process Allocation Size [Bytes]

(a) win_allocate

Latency [usec]

= = = =
o o o o
o E) S ®

-
o
ES

T T
Processes
28 (1x28) —+— 7
280 (10x28)
560 (20x28) i
840 (30x28) — =
1400 (50x28) —=—
2800 (100x28) 3
5600 (200x28) —o—

20

1
25 210 215 220
Per-process Allocation Size [Bytes]

(b) Win_dynamic

HLR|S

Allocation Latencies: Cray

i
i
=
1

" ' ' ' Prlocesses ' s ' ' ' Prlccesses '
10° ¥ 24 (1x24) —— 7§ 10° 24 (1x24) —+— 7
240 (10x24) * 240 (10x24)
107 b 480 (20x24)] 107 b 480 (20x24)]
600 (30x24) & 600 (30x24) &
1200 (50x24) - 1200 (50x24) -
5106 2400 (100x24) E 5106 | 2400 (100x24) 3
2 4800 (200x24) —o— i 4800 (200x24) —e—
S10° 4 105 F 4
& &
L.0a [] Lo0a [1
= 10 5 10
103 b g 103 F |
102 | k| 102 | E
101 1 1 1 1 1 101 1 1 1 1 1
20 25 210 215 220 20 25 210 215 220
Allocation Size [Bytes] Allocation Size [Bytes]
(a) Win_allocate (b) Win_dynamic

Communication Latencies: Open MPI

Latency [usec]
-
2 & 5
I8 > >

-
2
o

T T T

DART Put ——
DART Get

MPI Put (dynamic, flush) —&—
MPI Get (dynamic, flush) -

MPI Put (allocate, flush) - -o- -
MPI Get (allocate, flush) -

MPI Put (allocate, req) L]

MPI Get (allocate, req) L] v

o
sannsaad®
| | | | |

20 25 210 215 220
Transfer Size [Bytes]

(a) Intra-node

Latency [usec]

104

103

102

10t

100

10

102

HLR|S

T T
DART Put ——
E DART Get
MPI Put (dynamic, flush) —&—
MPI Get (dynamic, flush) -
£ MPI Put (allocate, flush) - - -
MPI Get (allocate, flush) -

MPI Put (allocate, req) -
F MPI Get (allocate, req)

LR

20 25 210 215
Transfer Size [Bytes]

(b) Inter-node

220

HLR|S

T T T T T T T T T T
DART Put —— DART Put ——
104 DART Get * . 104 + DART Get * =
MPI Put —&— MPI Put —&—
MPI Get —=— - MPI Get —=—
103 F MPI Put (allocate) - -o - ol 103 | MPI Put (allocate) - - - 3
MPI Get (allocate) - -= - s MPI Get (allocate) - -= -
(o) o
§ 10? 1 & 3
2 =
g 10! E g =
3 &
- —
100 4 4
101 E 101 E
10—2 L L L L L 10—2 1 1 1 1 1
20 25 210 215 220 20 25 210 215 220
Transfer Size [Bytes] Transfer Size [Bytes]
(a) Intra-node (b) Inter-node

Latency [usec]
= = = = =
o o o o o
> > 2 > ES

-
=
o

-
2
9

T T
DART Put ——

E DART Get —~

MPI Put (dynamic) —&—
MPI Get (dynamic) —=—

3 MPI Put (allocate) - -o -

MPI Get (allocate) - -= -

.
[TLTT PR L

L L L L

L

20 25 210 215
Transfer Size [Bytes]

(a) Intra-node

220

Latency [usec]

104

103

102

10t

100

10

102

HLR|S

BEmoRaghE

T T
DART Put ——
DART Get . =
MPI Put (dynamic) —&— ;
MPI Get (dynamic) —=—
MPI Put (allocate) - -o -
MPI Get (allocate) - = -

B
ggaste

20

25 210 215 220
Transfer Size [Bytes]

(b) Inter-node

» Heterogeneous latency characteristics

» Generally high allocation latencies: 1 — 600 ms
(up to 20 s for 100 GB on IB cluster)

» Shared/Dynamic window allocation potentially faster

v

Heterogeneous latency characteristics

v

Generally high allocation latencies: 1 — 600 ms

(up to 20 s for 100 GB on IB cluster)
Shared/Dynamic window allocation potentially faster
Communication latency higher on dynamic windows

» Shared memory optimization benefitial in some cases
» Diminishes in multi-threaded environments

v

v

» Heterogeneous latency characteristics

» Generally high allocation latencies: 1 — 600 ms

(up to 20 s for 100 GB on IB cluster)
» Shared/Dynamic window allocation potentially faster
» Communication latency higher on dynamic windows

» Shared memory optimization benefitial in some cases
» Diminishes in multi-threaded environments

~+ Added support for allocated windows (compile-time option)

Conclusions and Future Work

» MPI offers us many important features:
» team management / collectives
» global memory allocation
» communication primitives

» Shared memory optimization vs inter-node communcation latency

HLR|S

Conclusions and Future Work

» MPI offers us many important features:

» team management / collectives

» global memory allocation

» communication primitives
» Shared memory optimization vs inter-node communcation latency
» Important open aspects in MPI:

» Local alignment of MPI-allocated memory
» Information on and control of progress
» Thread-parallel collective operations

HLR|S

Conclusions and Future Work

>

MPI offers us many important features:

» team management / collectives
» global memory allocation
» communication primitives

Shared memory optimization vs inter-node communcation latency

Important open aspects in MPI:

» Local alignment of MPI-allocated memory
» Information on and control of progress
» Thread-parallel collective operations

Avoiding temporary global memory allocations (use MPI collectives
wherever possible)

v

v

v

HLR|S

There is hope for shared memory...

relax constraints on MPI_ WIN_SHARED_ QUERY #23

jeffhammond opened this issue on Dec 8, 2015 - 3 comments

Q jeffhammond commented on Dec 8, 2015 Mamber | +(g)

Summary

Extend the functionality of MPI_WIN_SHARED_QUERY to all windows, which will inform the user regarding the
MPI shared-memory properties of any window. To what extent this function will return a nontrivial result
(i.e. indicate the shared memory has been allocated and is accessible) depends on the implementation. It
may be difficult for implementations fo use shared memory with MPI_WIN_CREATE , although there are
multiple existence proofs.

This change permits MP| shared-memory accesses on any window, but nothing new is required.

Implementations will now be allowed to provide more if possible. Previously, if implementations were able
to do this, there was no ability for the user to leverage it explicitly.

https://github.com/mpi-forum/mpi-issues/issues/23

https://github.com/mpi-forum/mpi-issues/issues/23

Questions?

joseph.schuchart@hlrs.de
github.com/dash-project/
dash-project.org

Deutsche
SPPEXA L
schungsgemeinschaft
G e2ezez orc
dash

joseph.schuchart@hlrs.de
github.com/dash-project/
dash-project.org

