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Introduction to the DASH RunTime

DASH:

» C++11/14 PGAS abstraction following STL
concepts: iterators + operators

» Static and dynamic distributed containers

Container Description Data distribution DASH Application
Array<T> 1D Array static, configurable
‘ DASH C++ Template Library
NArray<T, N>  N-dim. Array static, configurable
| DART C API
Shared<T> Shared scalar fixed, configurable
i ; | DART (DASH RunTime)

Variable-size,
Directory"<T>  locally indexed manual Communication Backend

Arra

Y ‘ MPI 3.x|GAsmn |GASPI |cunA |
N Similar to .

CoArray’<T> CAF uniform (rifier

(*) Under construction
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Introduction to the DASH RunTime

DASH:

» C++11/14 PGAS abstraction following STL
concepts: iterators + operators

» Static and dynamic distributed containers
» Distributed algorithms: find, max_element, ... DASH Application |
» Local and global view on data | DASH Ce+ Template Library
» Any trivially copyable type as elements | AR C APl |
» Flexible data distribution patterns | oART @ASH RunTime

DA RT Communication Backend
» C11 runtime for DASH L:::mt”"' —

» Communication abstraction
» Workhorse implementation: MPI-3 RMA

» Easy transition from existing parallel codes
> Available on (nearly) all systems




Example: DASH-DART-MPI

dash::Array<int> array(N);
// initialize array

// better: dash::generate ()
if (dash::myid() == 0) {

for (int i = 0; i < N; ++i) {

array.async[il =

}

¥

array.barrier();

if (dash::myid() == 1)
std::cout << arrayl[0];

DASH

dart_team_memalloc_aligned ();

dart_put_blocking_local();

dart_flush_all();
dart_barrier ();

dart_get_blocking ();

DART

MPI_Win_allocate_shared();
MPI_Win_attach();
MPI_Allgather ();

MPI_Rput ();
MPI_Wait O);

MPI_Win_flush_all();
MPI_Barrier();

MPI_Rget ();
MPI_Wait ();

MPI



MPI-3 Aspects and Features

» Process groups and collectives
» Thread-safety

» Asynchronous Progress

» Communication Primitives

>

Global Memory Allocation




Thread-safety

DASH/DART functionality generally thread-safe
~ Usable with common threading abstractions (e.g., OpenMP)

void compute (dash::Array<double>& array)
#pragma omp parallel for schedule (dynamic)
for (int i = 0; i < array.size(); ++i) {
array.asyncl[il = f(i);
}
array.flush();
}




Thread-safety

DASH/DART functionality generally thread-safe
~ Usable with common threading abstractions (e.g., OpenMP)

Some limitations apply:
» Unsynchronized data access in global memory
> Alternative: dash: :Array< dash::Atomic<T> >
» Collective operation on same team

» Reductions/synchronization
» Team management
» Global memory allocation
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(Asynchronous) Progress

» MPI one-sided can come in two flavors:
1. Progress happens without involvement of the remote process
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(Asynchronous) Progress

» MPI one-sided can come in two flavors:
1. Progress happens without involvement of the remote process
2. Progress happens with involvement of the remote process
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» Does progress happen in the background? We don’t know!
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makes progress on all enabled communications it
participates in, while blocked on an MPI call.
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(Asynchronous) Progress

» MPI one-sided can come in two flavors:

1. Progress happens without involvement of the remote process
2. Progress happens with involvement of the remote process

» MPI standard is vague:
[...] implementations must guarantee that a process
makes progress on all enabled communications it
participates in, while blocked on an MPI call.

while (!flag) {
> Examp|e: MPI_Get (&flag, mype, win);

. -~ MPI_Flush_local(mype, wine);
local polling ~ blocked? )

» MPI interfaces for triggering progress engine and querying progress
semantics?
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DART Communication Primitives

» Relies on passive target mode (MPI_Win_lock_all())
» Extended Put/Get interface:

» dart_get: non-blocking, requires dart_flush[_locall
» dart_get_blocking: remote completion
» dart_get_blocking_local: local completion
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DART Communication Primitives
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DART Communication Primitives

v

Relies on passive target mode (MPI_Win_lock_all())
Extended Put/Get interface:

» dart_get: non-blocking, requires dart_flush[_locall
» dart_get_blocking: remote completion
» dart_get_blocking_local: local completion

Strided/indexed access:
> dart_create_type_strided ~~ MPI_Type_vector

v

v

> dart_create_type_indexed ~~ MPI_Type_indexed
DART uses size_t

» Transparently chunk up large transfers (> 2°' bytes)
» Preallocate types using MPI_Type_contiguous

No implicit ordering guarantees in non-blocking operations

v

v



Global Memory Allocation
Win_allocate

MPI Win_allocate

© || T

Node 0 Node 1




Global Memory Allocation
Win_allocate

MPI Win_allocate

@ E[D Win_dynamic

Node 0 Node 1

MPI_Allgather

©)

MPI_Win_create_shared

+ ( :
MPI_Win_shared_query
+ [
_Get_address T
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Notes On Global Memory Allocation

» No control over local memory alignment
» Natural alignment seems guaranteed
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Notes On Global Memory Allocation

» No control over local memory alignment

» Natural alignment seems guaranteed
» Shared memory system configuration: size of /dev/shm and /tmp
» Temporary global allocations used in DASH algorithm

» Most notably: accumulate and [min,max] _element
» Required for custom operators and ValueType
» Cannot always use MPI reduction/collective operations

» What are the performance characteristics?
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Systems under test:
» Cray XC40 Hazel Hen: CCE 8.5.3
» IBM SuperMUC: iDataPlex IBM POE 1.4
» IB Linux Cluster: Open MPI 2.0.2
Extension of the OSU benchmark suite

» Allocation latencies
» Communication latencies

» Code available at
https://github.com/dash-project/dash-bench



https://github.com/dash-project/dash-bench

Allocation Latencies: Open MPI
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Allocation Latencies: Cray
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Communication Latencies: Open MPI
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» Heterogeneous latency characteristics

» Generally high allocation latencies: 1 — 600 ms
(up to 20 s for 100 GB on IB cluster)

» Shared/Dynamic window allocation potentially faster
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» Heterogeneous latency characteristics

» Generally high allocation latencies: 1 — 600 ms

(up to 20 s for 100 GB on IB cluster)
» Shared/Dynamic window allocation potentially faster
» Communication latency higher on dynamic windows

» Shared memory optimization benefitial in some cases
» Diminishes in multi-threaded environments

~+ Added support for allocated windows (compile-time option)



Conclusions and Future Work

» MPI offers us many important features:
» team management / collectives
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» Shared memory optimization vs inter-node communcation latency




HLR|S

Conclusions and Future Work

» MPI offers us many important features:

» team management / collectives

» global memory allocation

» communication primitives
» Shared memory optimization vs inter-node communcation latency
» Important open aspects in MPI:

» Local alignment of MPI-allocated memory
» Information on and control of progress
» Thread-parallel collective operations



HLR|S

Conclusions and Future Work

>

MPI offers us many important features:

» team management / collectives
» global memory allocation
» communication primitives

Shared memory optimization vs inter-node communcation latency

Important open aspects in MPI:

» Local alignment of MPI-allocated memory
» Information on and control of progress
» Thread-parallel collective operations

Avoiding temporary global memory allocations (use MPI collectives
wherever possible)

v

v

v
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There is hope for shared memory...

relax constraints on MPI_ WIN_SHARED_ QUERY #23

jeffhammond opened this issue on Dec 8, 2015 - 3 comments

Q jeffhammond commented on Dec 8, 2015 Mamber | +(g)

Summary

Extend the functionality of MPI_WIN_SHARED_QUERY to all windows, which will inform the user regarding the
MPI shared-memory properties of any window. To what extent this function will return a nontrivial result
(i.e. indicate the shared memory has been allocated and is accessible) depends on the implementation. It
may be difficult for implementations fo use shared memory with MPI_WIN_CREATE , although there are
multiple existence proofs.

This change permits MP| shared-memory accesses on any window, but nothing new is required.

Implementations will now be allowed to provide more if possible. Previously, if implementations were able
to do this, there was no ability for the user to leverage it explicitly.

https://github.com/mpi-forum/mpi-issues/issues/23


https://github.com/mpi-forum/mpi-issues/issues/23

Questions?

joseph.schuchart@hlrs.de
github.com/dash-project/
dash-project.org
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